

# GREENSTYLE MULTISPLIT AIR CONDITIONERS – R32

# **SERVICE MANUAL**



INDOOR UNIT
GREENSTYLE DUAL 9000 UI
GREENSTYLE DUAL 12000 UI

OUTDOOR UNIT
GREENSTYLE DUAL 14000 UE

Please read this manual carefully before installing and using the air conditioner, and retain for future reference.

# **CONTENTS**

| CONTENTS                           | 2  |
|------------------------------------|----|
| Part1 General Information          | 4  |
| 1. Unit appearance                 |    |
| 2. Accessories Included5           |    |
| Part2 Features                     | 6  |
| 1. Outdoor Units6                  |    |
| 2. Wall Mounted8                   |    |
| 3. WIFI Control9                   |    |
| Part3 Piping System                | 10 |
| 1. 14K                             |    |
| Part4 Dimension                    | 11 |
| 1. Wall Mounted11                  |    |
| 2. Outdoor Unit11                  |    |
| Part5 Electrical Principle Diagram | 12 |
| 1. Wall Mounted12                  |    |
| 5. Outdoor Unit                    |    |
| Part6 Capacity Amendment           | 14 |
| 1. Operation range                 |    |

| 2. Capacity amendment of different ambient temperature | 14 |
|--------------------------------------------------------|----|
| 3. Long piping length                                  | 16 |
| 4. Capacity amendment of different piping length       | 17 |
| 5. Equivalent Pipe length conversion                   | 18 |
| Part7 Controller                                       | 19 |
| 1. Controller                                          | 19 |
| 2. Wifi Module                                         | 21 |
| Part8 Explosive View                                   | 24 |
| 1. Wall Mounted                                        | 24 |
| Part9 PCB Instruction                                  | 26 |
| 1. Outdoor Unit PCB                                    | 26 |
| Part10 Trouble Shooting                                | 28 |
| 1. Fault code list                                     | 28 |
| 2. Failure analysis                                    | 32 |

# **Part 1 General Information**

# 1. Unit appearance

#### 1.1 Wall - Mounted

| Picture | Capacity Range / Mode |                     |  |  |
|---------|-----------------------|---------------------|--|--|
|         | 09 K Btu/h            | GREENSTYLE 9000 UI  |  |  |
| 26      | 12 K Btu/h            | GREENSTYLE 12000 UI |  |  |

#### 1.2 Outdoor Unit

|                | 1 drive 2 - 14k      |
|----------------|----------------------|
| Capacity (Btu) | GREESTYLE DUAL 14000 |
| Picture        |                      |

# 2. Accessories Included

## 2.1 Outdoor Units

| NI° | Name                | QUANTITY |  |  |  |  |  |  |  |
|-----|---------------------|----------|--|--|--|--|--|--|--|
| IN  | N° Name             | 14K      |  |  |  |  |  |  |  |
| 1   | Installer<br>manual | 1        |  |  |  |  |  |  |  |
| 2   | Drainage connector  | 1        |  |  |  |  |  |  |  |
| 3   | Pipe adaptor        | 0        |  |  |  |  |  |  |  |
| 4   | copper nuts         | 8        |  |  |  |  |  |  |  |

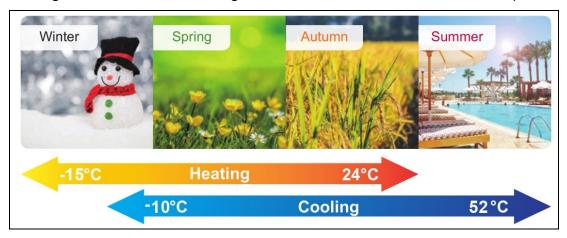
#### 2.2 Indoor Units

|    |                              | QUANTITY        |  |  |  |  |  |
|----|------------------------------|-----------------|--|--|--|--|--|
| N° | Name                         | Wall<br>Mounted |  |  |  |  |  |
| 1  | User manual                  | 1               |  |  |  |  |  |
| 2  | Remote control               | 1               |  |  |  |  |  |
| 3  | Batteries for Remote Control | 2               |  |  |  |  |  |
| 4  | Touch screen wired Control   | 0               |  |  |  |  |  |
| 5  | Panel screw                  | 0               |  |  |  |  |  |
| 6  | Drainage tube                | 0               |  |  |  |  |  |
| 7  | Pipe adaptor                 | 0               |  |  |  |  |  |
| 8  | Thermal insulation pipe      | 0               |  |  |  |  |  |

# **Part 2 Features**

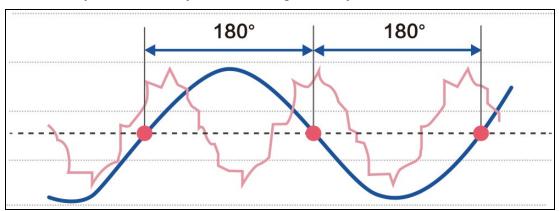
#### 1. Outdoor Units

#### **Environmental-friendly Refrigerant R32**


The GWP value of R32 is smaller, so the effect on the greenhouse effect is smaller. The ODP value of R32 is 0, so it's no harm to our planet's ozone layer.

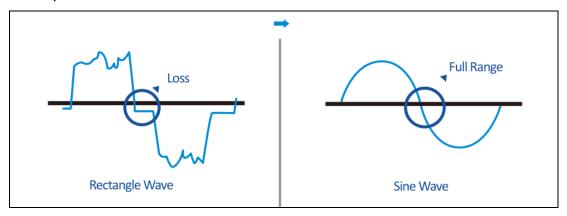
#### **High Efficiency**

Equipped with high efficiency DC Inverter compressor, adjustable fan motor and advanced 180° sine wave vector driver, the system can be higher than 6.1 in SEER and 4.0 in SCOP so as to meet the European and Australian new energy efficiency standards.


#### Reliability

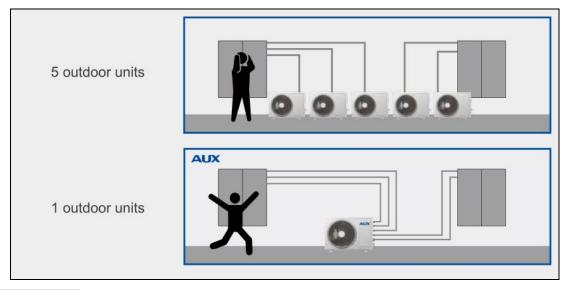
Stable cooling under -10°C and heating under -15°C outdoor environment temperature.




#### 180°Sine Wave Control

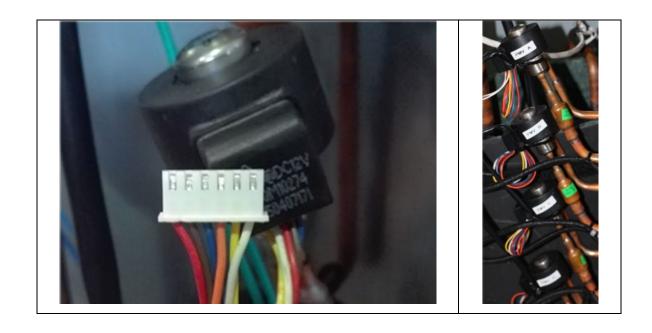
DC inverter compressor uses 180°sine wave vector control technique, make compressor motor operate smoothly and efficiency increases significantly.




#### **Energy Saving**

Cutting-edge DC inverter of sine wave control and active PFC technology realize low noise and economical operation.




#### **Space-Saving Installation**

Up to 5 indoor units can be connected to a single outdoor unit, which reduces the number of outdoor units required so as to save installation space. Besides, each indoor unit can controlled individually and they even needn't to be installed at the same time.



#### **EXV** Regulation

Each Indoor Unit adjusted by a EXV, whole unit could achieve quick cooling/heating,and decrease throttling noise in indoor units.



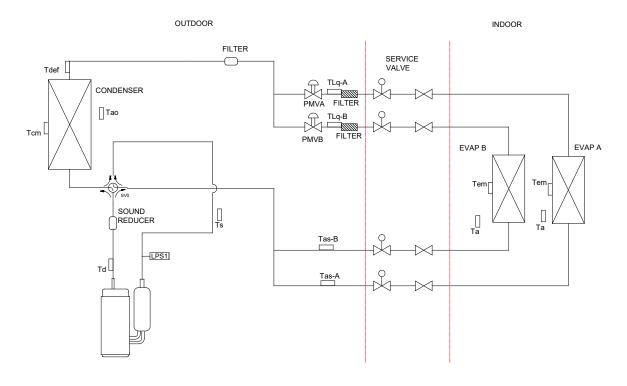
#### 2 Wall Mounted

Wall Mounted type A/C is installed by the wall, compared with Floor & Standing type A/C, it has following advantages: Wall mounting installation combining with the decoration, makes the room more elegant; Flexible installation in anywhere in the wall and swing blowing, makes you feel more comfortable.

## 2 Ways Draining Connection

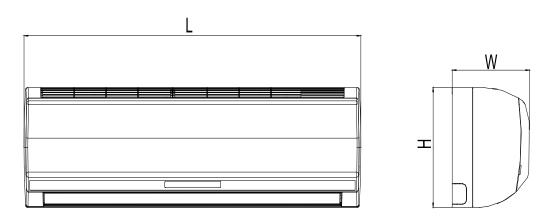
Both left and right sides of unit are possible for drainage pipe connection, easy for installation.




# **3 WIFI Control**



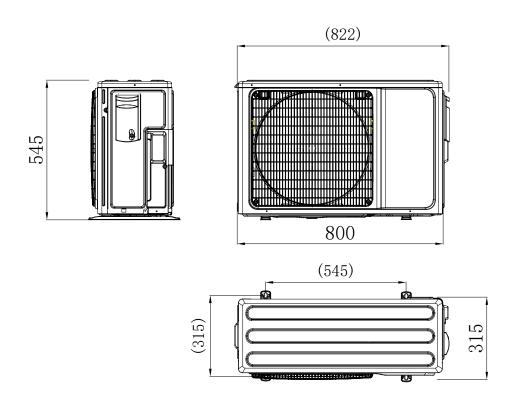
The optional WiFi modular makes it possible to monitor and control your AC while on the road through APP on your mobile phone or pad.


# **Part 3 Piping System**

## 14K



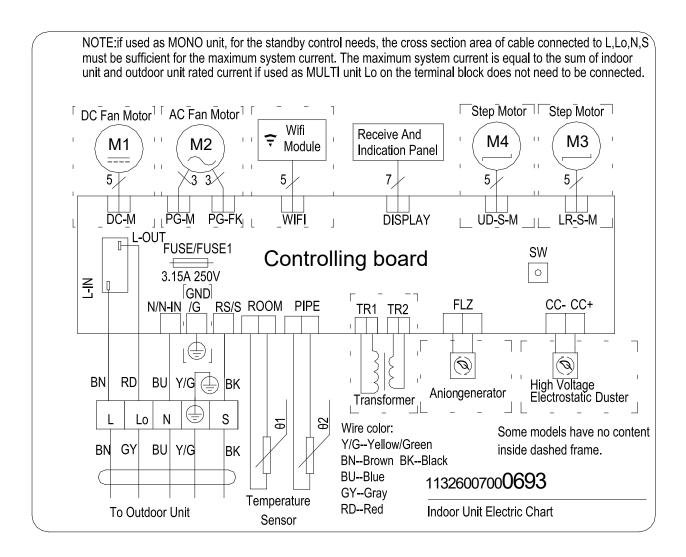
# **Part 4 Dimension**


# 1. Indoor Unit



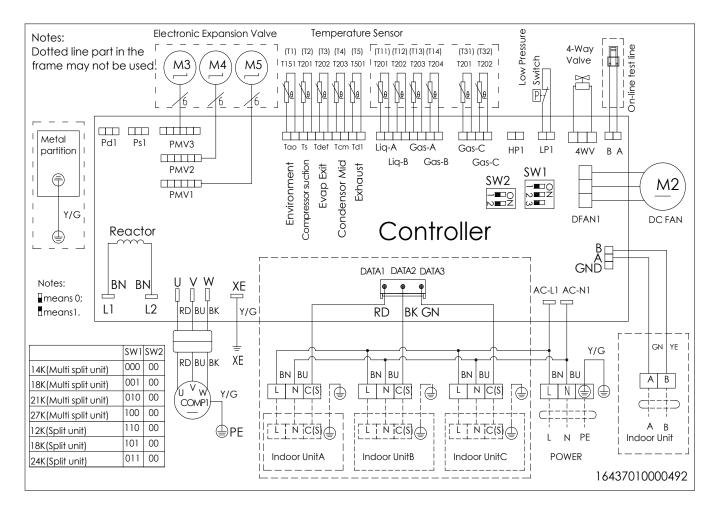
| Physical Dim | nension | GREENSTYLE 9000 UI | GREENSTYLE 12000 UI |
|--------------|---------|--------------------|---------------------|
| Length       | mm      | 750                | 750                 |
| Height       | mm      | 285                | 285                 |
| Width        | mm      | 200                | 200                 |

# 2. Outdoor Unit


# 14K



# Part 5 Electrical Principle Diagram


#### 1 Wall Mounted

(09K,12K)



#### **Outdoor Unit**

#### 14K



# **Part 6 Capacity Amendment**

# 1. Operation range

| Cooling capa | icity (KBtu/h) | 14K            |  |  |  |  |  |  |  |
|--------------|----------------|----------------|--|--|--|--|--|--|--|
| Power        | supply         | 220-240V~/50Hz |  |  |  |  |  |  |  |
| Volt         | age            | 187~242V       |  |  |  |  |  |  |  |
| Ambient      | Cooling        | -10~52℃        |  |  |  |  |  |  |  |
| temperature  | Heating        | -15~24℃        |  |  |  |  |  |  |  |

## 2. Capacity amendment of different ambient temperature

2.1 Amendment coefficient of Cooling capacity under different indoor/outdoor DB/WB temperature **K1** 

| IDU<br>temp | <b>ɔ.</b> ℃ |      | Outdoor air inlet DB temperature℃ |      |      |      |      |      |      |      |      |      |      |
|-------------|-------------|------|-----------------------------------|------|------|------|------|------|------|------|------|------|------|
| DB          | WB          | -15  | -10                               | 0    | 10   | 16   | 25   | 30   | 35   | 40   | 43   | 48   | 52   |
| 23          | 16          | 1.26 | 1.19                              | 1.12 | 1.08 | 1.05 | 1    | 0.95 | 0.90 | 0.87 | 0.85 | 0.82 | 0.77 |
| 25          | 18          | 1.28 | 1.26                              | 1.19 | 1.12 | 1.08 | 1.05 | 1    | 0.95 | 0.90 | 0.87 | 0.85 | 0.82 |
| 27          | 19          | 1.30 | 1.28                              | 1.26 | 1.19 | 1.12 | 1.08 | 1.05 | 1    | 0.95 | 0.90 | 0.87 | 0.85 |
| 28          | 20          | 1.33 | 1.30                              | 1.28 | 1.26 | 1.19 | 1.12 | 1.08 | 1.05 | 1    | 0.95 | 0.90 | 0.87 |
| 30          | 22          | 1.5  | 1.33                              | 1.30 | 1.28 | 1.26 | 1.19 | 1.12 | 1.08 | 1.05 | 1    | 0.95 | 0.90 |
| 32          | 24          | 1.7  | 1.5                               | 1.33 | 1.30 | 1.28 | 1.26 | 1.19 | 1.12 | 1.08 | 1.05 | 1    | 0.95 |

Actual cooling capacity calculation:

Actual cooling capacity=amendment coefficient of cooling capacity × nominal cooling capacity

——Amendment coefficient of cooling capacity could be found from table above.

# 2.2 Amendment coefficient of Heating capacity under different indoor/outdoor DB/WB temperature **K2**

| IDU<br>temp.℃ | Outdoor air inlet DB temperature℃ |      |      |      |      |      |      |      |      |  |
|---------------|-----------------------------------|------|------|------|------|------|------|------|------|--|
| DB            | -15                               | -10  | -5   | 0    | 7    | 10   | 15   | 20   | 24   |  |
| 16            | 0.93                              | 0.97 | 1    | 1.06 | 1.08 | 1.1  | 1.14 | 1.2  | 1.25 |  |
| 18            | 0.87                              | 0.93 | 0.97 | 1    | 1.06 | 1.08 | 1.1  | 1.14 | 1.2  |  |
| 20            | 0.8                               | 0.87 | 0.93 | 0.97 | 1    | 1.06 | 1.08 | 1.1  | 1.14 |  |
| 22            | 0.71                              | 0.8  | 0.87 | 0.93 | 0.97 | 1    | 1.06 | 1.08 | 1.1  |  |
| 24            | 0.62                              | 0.71 | 0.8  | 0.87 | 0.93 | 0.97 | 1    | 1.06 | 1.08 |  |

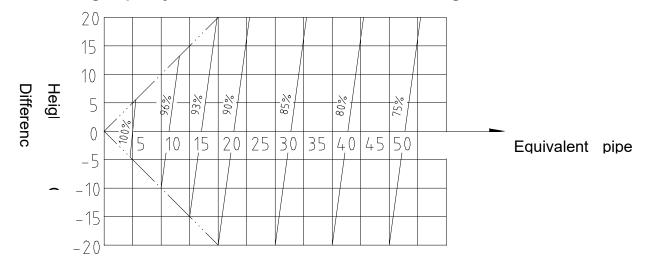
Actual heating capacity calculation:

Actual heating capacity=amendment coefficient of heating capacity × nominal heating capacity

——amendment coefficient of heating capacity could be found from table above.

# 3. Long piping length

| Cooling capacity (KBtu/h)        |                               | 14K     |         |    |  |  |  |
|----------------------------------|-------------------------------|---------|---------|----|--|--|--|
| Connection                       | Connection Liquid pipe        |         | Ф6.35*2 |    |  |  |  |
| Pipe(mm)                         | Gas pipe                      | Ф9.52*2 |         |    |  |  |  |
| Max. length fo                   | Max. length for all rooms (m) |         |         | 40 |  |  |  |
| Max. length fo                   | r one IU (m)                  | 2       | 25      |    |  |  |  |
| Max. height di<br>between IU an  | 15                            |         |         |    |  |  |  |
| Max. height di<br>between IUs (r | 10                            |         |         |    |  |  |  |

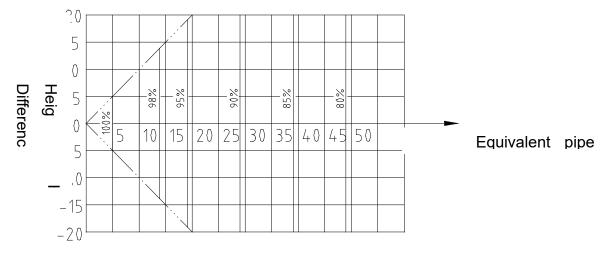

#### Caution:

- 1. The standard Pipe length is 5m, if the pipe length is less than this then no additional charging is necessary. If the pipe length is more than this then you should charge more refrigerant into the system according to the above Charging Data
  - 2. The thickness of the pipe is 0.6-1.0, bearing pressure is 4.2MPa;
- 3. If the connection pipe is too long, the cooling capacity and stability would be decreased. And the more bend quantity, the resistance in the piping system would be bigger, then the cooling and heating capacity would be decreased even lead to compressor broken. We suggest you to use the shortest connection pipe according to the pipe length parameter in this manual. If the height difference between outdoor and indoor unit is more than 5m, an oil trap should be installed in the gas pipe for every 10 meters.

## 4. Capacity amendment of different piping length

4.1 Amendment coefficients of heating and cooling capacity under different height drop

#### Different Cooling Capacity modified coefficients at different height:




#### Note:

**K**3

H = Height of Outdoor Unit — Height of Indoor Unit

#### Different Heating Capacity modified coefficients at different height:



#### Note:

H = Height of Outdoor Unit — Height of Indoor Unit

#### 4.2 Correction capability

Cooling capacity = Rated cooling capacity xK1xK3

Heating capacity = Rated heating capacity xK2xK3

# 5. Equivalent Pipe length conversion

Equivalent pipe length means converting pipe elbow to straight pipe length after considerate the pressure loss.

**Bend and Oil Loop Conversion tablet** 

| Type Pipe Dia.(mm) | Bend (m) | Oil Loop(m) |
|--------------------|----------|-------------|
| 6.35               | 0.10     | 0.7         |
| 9.52               | 0.18     | 1.3         |
| 12.70              | 0.20     | 1.5         |
| 15.88              | 0.25     | 2.0         |
| 19.05              | 0.35     | 2.4         |
| 22.02              | 0.40     | 3.0         |

Equivalent Pipe length L=Actual Pipe length L+ Bend Qty× Equivalent pipe bend length+ Oil Loop Qty × Equivalent Oil Loop length

#### Note:

If there is relatively level difference of indoor and outdoor unit, S-shaped oil trap must be installed every 8~10m for vertical pipe.

# **Part 7 Controller**

#### Controller



POWER button: Switch the unit ON/OFF.

MODE button: Select mode , push the button one time, then the operation modes will change in turn as Auto-Cooling-Dehumidify-Heating △ → ※ → ▲ → ※

**TEMP + button** and **TEMP - button**: Temperature adjustment range: 16~32

FAN button: Change the fan speed will change in turn as: Low-Medium-High-Auto

**SWING button**: Press this button for the first time when operation, it will start the swing function. Push the button for the second time, cancel the swing function. (The function is available matched with the concerned unit)

#### TIMER/CLOCK button:

Clock Setting: Normally display the clock set currently (display 12:00 for the first electrifying or resetting). When press the button for 5 seconds, the time display zone will flicker, then press [+] and [-] button and to adjust hour that uses 12-hour clock including "A.M." and "P.M." time; press the button again to complete the setting.

**Timer setting:** Press the button to set TIMER ON/OFF, press the button then "ON" will flicker on the display screen. then press [+] and [-] button and to adjust hour that uses

12-hour clock including "A.M." and "P.M." time; press the button again to complete the setting. The "OFF" setting is the same methods.

Remark: When setting functions such as mode, temperature, air port and air velocity, display screen displays all presetting parameters and remains constant; after reaching presetting time, air conditioner will automatically start as per presetting state.

After setting timing ON and OFF function, pressing button of 【Timer/Clock】 can cancel timing setting.

#### **SLEEP button:**

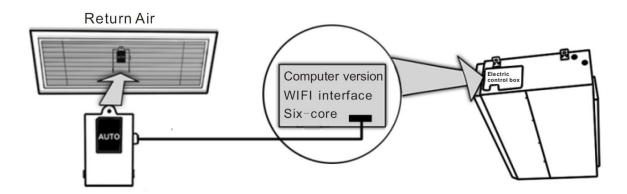
- 1. Press the button to the sleeping indicator light of indoor unit flashes on;
- 2. After the setting of sleeping mode, the cooling operation enables the set temperature to increase  $1^{\circ}$ C after 1 hour and another  $1^{\circ}$ C automatically after 1 hour.
- 3. After the setting of sleeping mode, the heating operation enables the set temperature to drop2℃ after 1 hour and another 2℃ automatically after 1hour.
- 4. The air condition runs in sleeping mode for 7hours and stops automatically.

**Remark:** Press the mode or ON/OFF button, the remote controller clears sleeping mode away.

**SCREEN button**: Press the button to let the LCD display working or not by pressing the button.

#### 2. Wifi Module

# WiFi Module Configuration


#### (1) APP Download

Mobile terminal scan the following dimensional code to download APP, or search "AC Freedom" in APPSTORE and Google store



#### ② Light Commercial WIFI Module Installation

Connect the WIFI module communication wire to WIFI interfaces of main PCB, as shown below:



The WIFI module should be placed in the return air or some other place in WIFI area. (customers buy the wireless router)

#### ③ APP Configuration

- Press "healthy" button 8 times consecutive, and buzzer even ring two sound then into the configuration
- Connect mobile terminals to WIFI, open APP "AC Freedom", and then operate following the steps below:

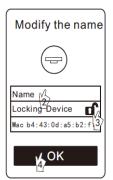






Clicik "Add device"

Wi-Fi name will automatically appear, enter password to start configuration (first configuration takes about 1 minute).


After finishing configuration, on screen bottom will indicate "Finish", then it will automatically return to "Device list" interface and shows the configured AC.

**Note:**If the configuration fails or you change the password of wireless router, you need to reset the WIFI module to reconnect: Turn on the power of the module, then repeat the steps above for APP configuration.

#### **AC** management

#### ① Modify AC name and locking function





#### Note:

If you had locked AC equipment, you need to unlock before connecting other mobile terminal. If the mobile terminal locked AC was accidentally lost, you need to reset WIFI module first, and then use the new mobile terminal to connect (Reset step is same with 1.3 APP configuration).

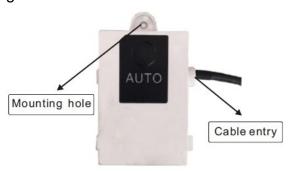
- ② For other instructions, please refer to "HELP" in APP.
- ③ Remote-control device

Connect the wireless router to internet, then open the GPRS. It means the remote control device, voice control function only effective after connected to the Internet

#### **Trouble Shooting**

#### If unable to properly configured or connect the WIFI box:

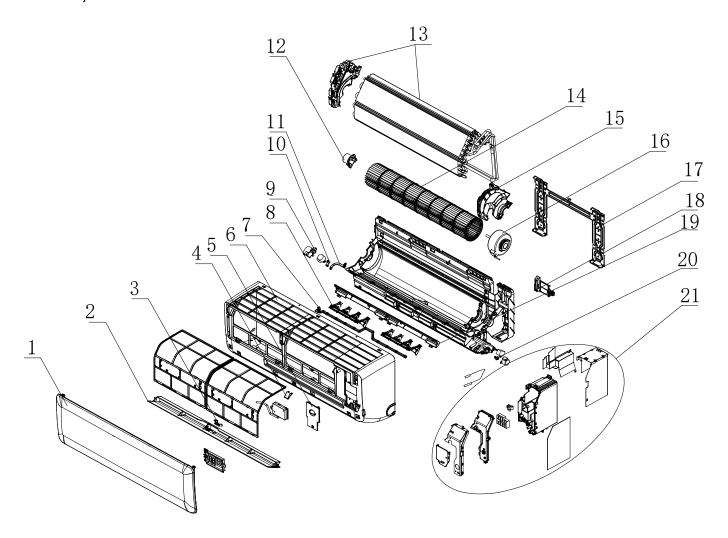
- Make sure the WIFI box for wiring is properly connected.
- Long press WIFI box 8 seconds to reconfigure the positive button. If the problem can't be solved,
   please contact after sales person.


#### **Technical Parameters**

Working temperature: 0~50°C;

Working environment humidity: 20~90%RH;

• Dimensions: 78 X 52 X 15.5


Configuration cable wire length: 1500mm

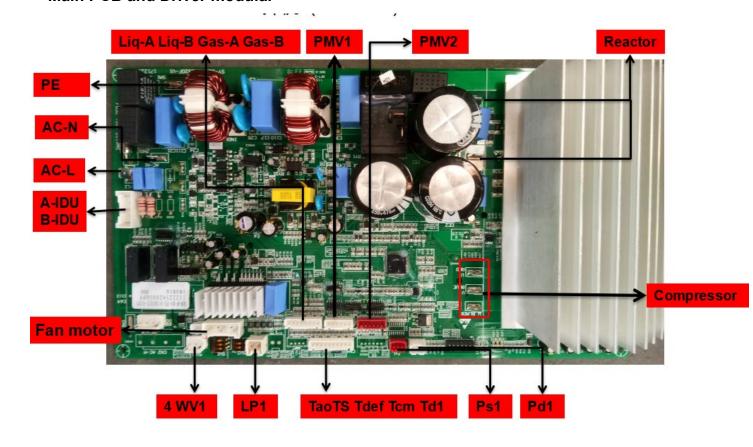


# **Part 9 Explosive View**

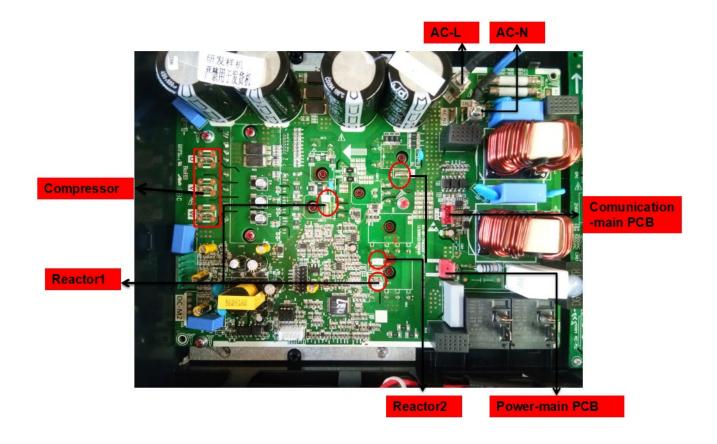
# **Wall Mounted**

# 09K, 12K




| NO. | Material code  | Part name                   | Qty |
|-----|----------------|-----------------------------|-----|
| 1   | 11220502004342 | Decro panel                 | 1   |
| 2   | 11320135000018 | Air louver (Horizontal)     | 1   |
| 3   | 11220508000139 | Filter                      | 2   |
| 4   | 11320096000104 | Screw cover                 | 1   |
| 5   | 11320076000084 | Medium frame wiring cover   | 1   |
| 6   | 11320002000305 | Medium frame                | 1   |
| 7   | 11320085000094 | Guide vane linkage          | 1   |
| 8   | 11320017000125 | Left-right swing blade      | 2   |
| 9   | 11320127000007 | Step motor bracket          | 1   |
| 10  | 11320091000014 | Crank link                  | 1   |
| 11  | 11320085000081 | Guide vane linkage B        | 1   |
| 12  | 11320062000028 | Bearing fixing bracket      | 1   |
| 13  | 11224003000649 | Evaporator assembly (07/09) | 1   |
|     | 11224003000764 | Evaporator assembly (12)    |     |
| 14  | 11220513000065 | Scroll fan                  | 1   |
| 15  | 11320052000044 | Fan motor cover             | 1   |
| 16  | 11230002000068 | IDU fan motor               | 1   |
| 17  | 11221500000034 | Mounting plate assembly     | 1   |
| 18  | 11320084000013 | Pipe clamp                  | 1   |
| 19  | 11320005000381 | Horizontal louver           | 1   |
| 20  | 11320079000016 | Step motor shaft sleeve     | 1   |
| 21  | 11222003002805 | Main control assembly       | 1   |

# **Part 10 PCB Instruction**


## **Outdoor Unit PCB**

14K,18K

**Main PCB and Driver modular** 



## **Drive Modular Board**



# **Part 11 Trouble Shooting**

WM: wall mounted unit

## 1. Fault code list

# 1.1 Temp. sensor fault (WM NO.8)

| Code display in IDU |    | Fault and a decorintian                                                  | Descible vesses                                                                                                                                                                                                                                           |  |
|---------------------|----|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     | WM | Fault code description                                                   | Possible reason                                                                                                                                                                                                                                           |  |
|                     | E1 | Fault with the room temperature sensor on the N # indoor unit            | Damage of the room temperature sensor on the indoor unit Poor contact of the room temperature sensor on the indoor unit Damage of wiring of the room temperature sensor on the indoor unit Damage of the main PCB on the indoor unit                      |  |
|                     | E3 | Fault with the temperature Sensor in the Middle of N # indoor evaporator | Damage of the temperature sensor on the indoor unit Poor contact of the temperature sensor on the indoor unit Damage of wiring of the temperature sensor on the indoor unit Damage of the main PCB on the indoor unit                                     |  |
|                     | НЗ | Fault with the liquid pipe temperature sensor on the N# indoor unit      | Damage of the liquid pipe temperature sensor on the indoor unit Poor contact of the liquid pipe temperature sensor on the indoor unit Damage of wiring of the liquid pipe temperature sensor on the indoor unit Damage of the main PCB on the indoor unit |  |
|                     | H4 | Fault with the gas pipe temperature sensor on the N# indoor unit         | Damage of the gas pipe temperature sensor on the indoor unit Poor contact of the gas pipe temperature sensor on the indoor unit Damage of wiring of the gas pipe temperature sensor on the indoor unit Damage of the main PCB on the indoor unit          |  |

| Code disp | olay in IDU | Fault code description                                               | Possible reason                                                                                                                                                                                                                                                     |
|-----------|-------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | WM          | <u>'</u>                                                             |                                                                                                                                                                                                                                                                     |
|           | F6          | Fault with the environmental temperature sensor on the outdoor unit  | Damage of the Environmental temperature sensor on the outdoor unit Poor contact of the Environmental temperature sensor on the outdoor unit Damage of wiring of the Environmental temperature sensor on the outdoor unit Damage of the main PCB on the outdoor unit |
|           | F4          | Fault with the discharge temperature sensor                          | Damage of the discharge temperature sensor on the outdoor unit Poor contact of the discharge temperature sensor on the outdoor unit Damage of wiring of the discharge temperature sensor on the outdoor unit Damage of the main PCB on the outdoor unit             |
|           | FA          | Fault with the suction temperature sensor                            | Damage of the suction temperature sensor on the outdoor unit Poor contact of the suction temperature sensor on the outdoor unit Damage of wiring of the suction temperature sensor on the outdoor unit Damage of the main PCB on the outdoor unit                   |
|           |             | Fault with the Temperature Sensor in the middle of Outdoor condenser | Damage of the temperature sensor on the outdoor unit Poor contact of the temperature sensor on the                                                                                                                                                                  |
|           | E2          | Fault with the Defrosting<br>Temperature Sensor on<br>Outdoor        | outdoor unit  Damage of wiring of the temperature sensor on the outdoor unit  Damage of the main PCB on the outdoor unit                                                                                                                                            |

# 1.2 Communication fault (WM NO.5)

| Code display in IDU |       | Fault and a description                                                             | Dossible reason                                                                                  |  |
|---------------------|-------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
|                     | WM    | Fault code description                                                              | Possible reason                                                                                  |  |
|                     | 5E/E5 | Communication error between the outdoor unit and the N # indoor unit                | Damage of the main PCB on the indoor unit Damage of the main PCB on the outdoor unit poor wiring |  |
|                     | E8/H2 | Communication error between the wired controller and main PCB of the N# indoor unit | poor wiring Damage of the wired controller Damage of the main PCB on the indoor unit             |  |

| F8 | Communication error between<br>the driver PCB and main PCB of<br>the outdoor unit | Damage of the driver PCB on the outdoor unit Damage of the main PCB on the outdoor unit poor wiring |
|----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|

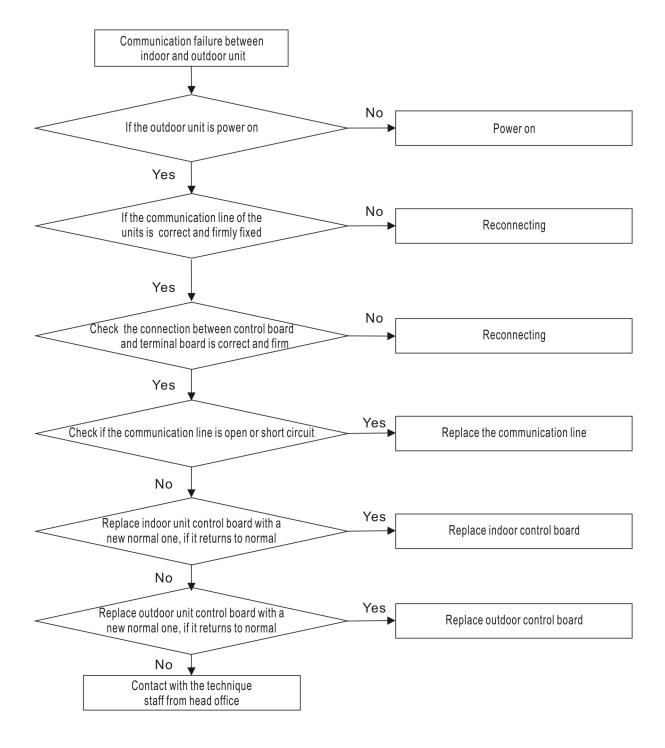
# 1.3 IDU fault (WM NO.3)

| Code display in IDU |                | Foult and also winting        | Danaihla wasan                            |
|---------------------|----------------|-------------------------------|-------------------------------------------|
|                     | WM             | Fault code description        | Possible reason                           |
|                     |                |                               | Float switch disconnected or poor wiring  |
|                     | H1             | Fault with the drainage on N# | Error setting of model parameters         |
|                     | 111            | Indoor unit                   | Drain plug                                |
|                     |                |                               | Damage of the pump                        |
|                     |                |                               | Low voltage                               |
|                     | E4             | Fault with the Fan motor of N | poor wiring                               |
|                     | E <del>4</del> | # indoor unit                 | Damage of the main PCB on the indoor unit |
|                     |                |                               | Damage of the motor                       |
|                     | P7             | Indoor anti-freezing          | Dirty Blockage of evaporator              |
|                     | r/             | protection                    | Indoor fan abnormal                       |

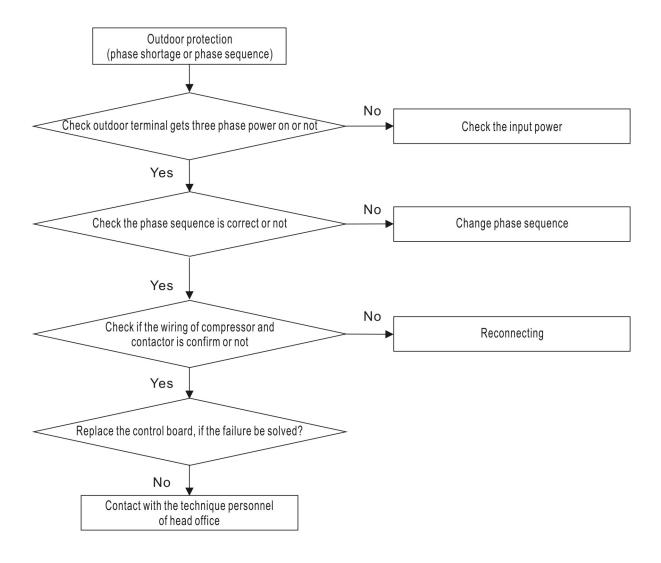
# 1.4 Refrigerant circuit fault (WM NO.6)

| Code display in IDU |       |                                                                                                          | 2                                                                                      |  |
|---------------------|-------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
|                     | WM    | Fault code description                                                                                   | Possible reason                                                                        |  |
|                     | P5    | High discharge temperature Protection                                                                    | Lack of the refrigerant Stop valve unopened Damage of the main PCB on the outdoor unit |  |
|                     | P4/P6 | Cooling: high temperature Protection of outdoor unit Heating: high temperature Protection of indoor unit | Cooling: Poor condenser heat exchange<br>Heating: Poor evaporator heat exchange        |  |
|                     | H7    | Low pressure protection                                                                                  | Lack of the refrigerant<br>Heat exchanger viscera                                      |  |
|                     | H5    | Lower discharge temperature protection                                                                   | temperature sensor shedding  Damage of the main PCB on the outdoor unit                |  |
|                     | P3    | Lack of refrigerant                                                                                      | Lack of the refrigerant Stop valve unopened                                            |  |

# 1.5 ODU components fault (WM NO.12)

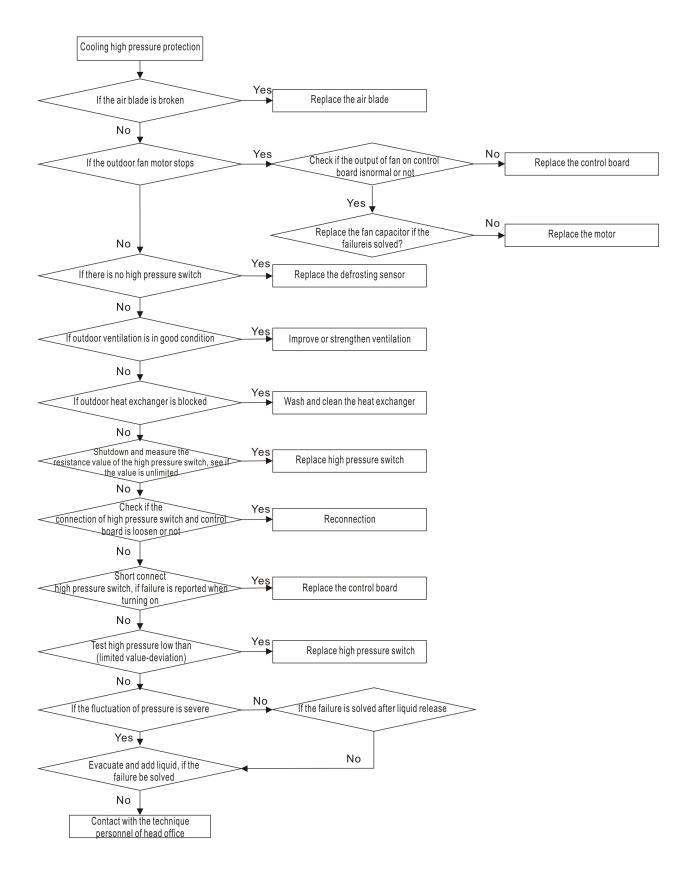

| Code display in IDU |             | Facility and a decading time | Described was a second                 |  |
|---------------------|-------------|------------------------------|----------------------------------------|--|
|                     | WM          | Fault code description       | Possible reason                        |  |
|                     | P2          | High pressure Switch         | System dirty blocking                  |  |
|                     | FZ          | Protection                   | Damage of High Voltage Pressure Switch |  |
|                     |             | Low pressure switch          | Lack of the refrigerant                |  |
|                     | H6          | protection                   | Stop valve unopened                    |  |
|                     |             | protection                   | damage of low press switch             |  |
|                     | H8          | Fault of four-way valve      | Damage of four-way valve               |  |
|                     | ПО          |                              | Damage to coil of four-way valve       |  |
|                     | F3/LA/L2    | Compressor failed to start   | Compressor power line not connected    |  |
|                     | /L3         |                              | Compressor sequence connection error   |  |
|                     | 713         |                              | Damage of compressor                   |  |
|                     | F0/LD/LE/LF | Fault with the Fan motor of  | Damage of motor                        |  |
|                     |             | outdoor unit                 | Damage of motor                        |  |
|                     |             | Outdoor DC Fan Out-of-step   | DC motor failure                       |  |
|                     | LF          | Protection & over current    | High Speed of DC Fan                   |  |
|                     |             | protection                   | System dirty blocking                  |  |

# 1.6 ODU electeic control fault (WM NO.20)

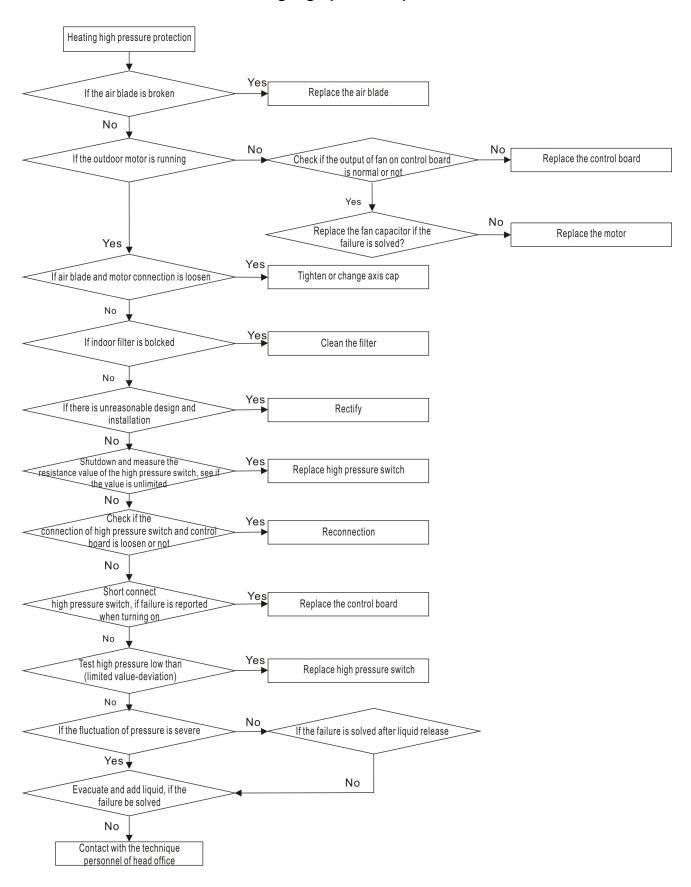

| Code display in IDU |                    | Fault and a description                                                   | Dessible recent                                                                             |
|---------------------|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                     | WM                 | Fault code description                                                    | Possible reason                                                                             |
|                     | F1/L1/L4<br>/L7/L8 | IPM Module failure protection                                             | compressor damage<br>compressor IPM Module damage<br>system blockage                        |
|                     | F9                 | Compressor drive hardware protection & Fault with the outdoor unit EEPROM | chip damage                                                                                 |
|                     | P8/J8              | Over-current Protection of the compressor drive modular                   | Excessive running current of the unit Voltage drops abruptly during operation               |
|                     | F7/L0              | Over-voltage Protection of the compressor drive modular                   | Excessive input voltage Lower input voltage                                                 |
|                     | HE/HF              | Abnormal temperature sensor in IPM/PFC module                             | Driver board IPM/PFC module device is broken                                                |
|                     | L9                 | Temperature of compressor drive modular too high protection               | Compressor IPM Module sensor damage Poor contact between compressor IPM module and radiator |
|                     | LD                 | AD Abnormal Protection for<br>Outdoor DC Fan Current Detection            | Abnormal component of the fan driver modular                                                |
|                     | F2/L5/<br>L6/LC    | Compressor drive PFC protection                                           | Damage of the PFC circuit components<br>Reactor damage                                      |
|                     | LH                 | IPM Protection of Outdoor DC Fan drive modular                            | The IPM Device of DC Motor is Bad                                                           |

## 2. Failure analysis

#### 2.1 [E5] Communication failure between indoor and outdoor unit

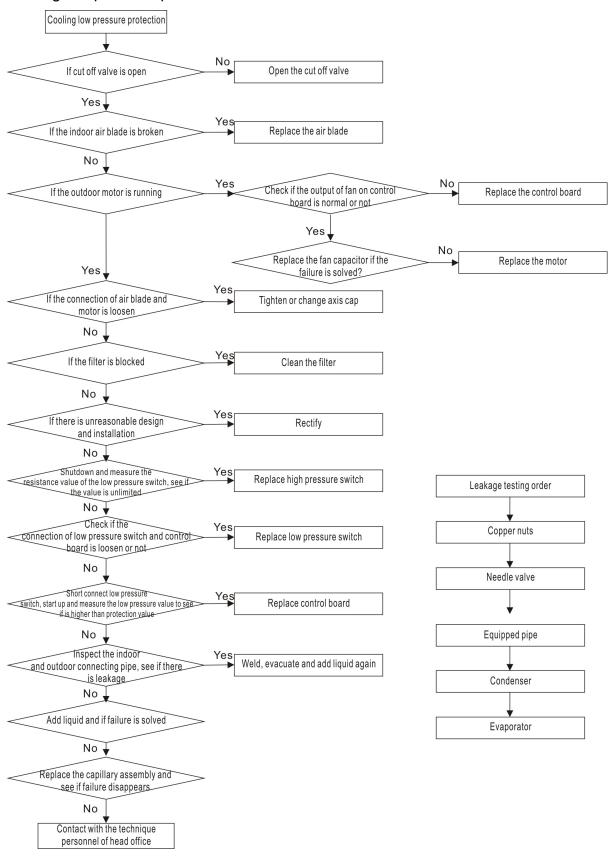



#### **Outdoor protection (phase sequence)**

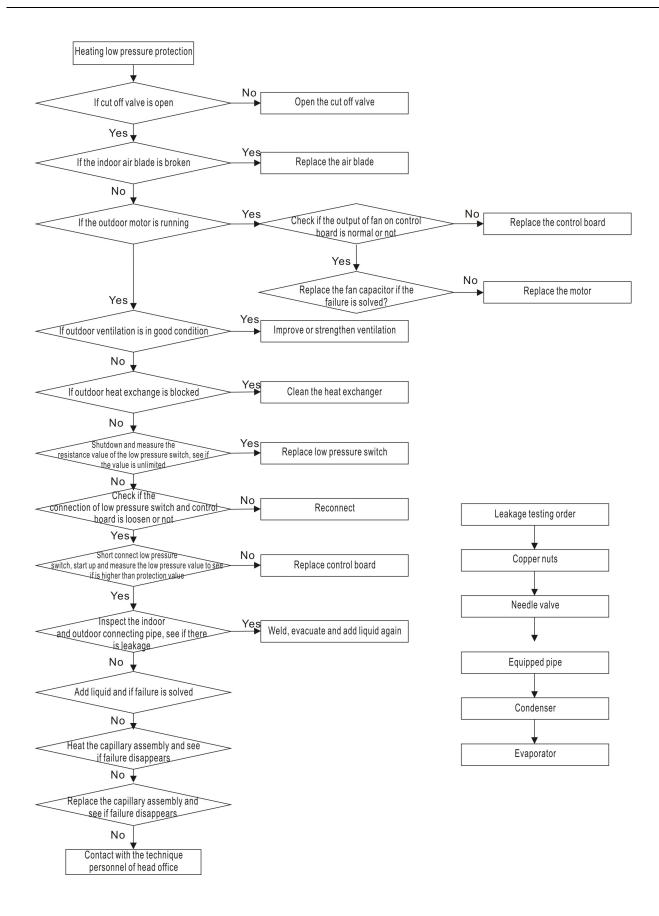



#### 2.2 [P2] high pressure protection

#### **Cooling high pressure protection**




# Heating high pressure protection

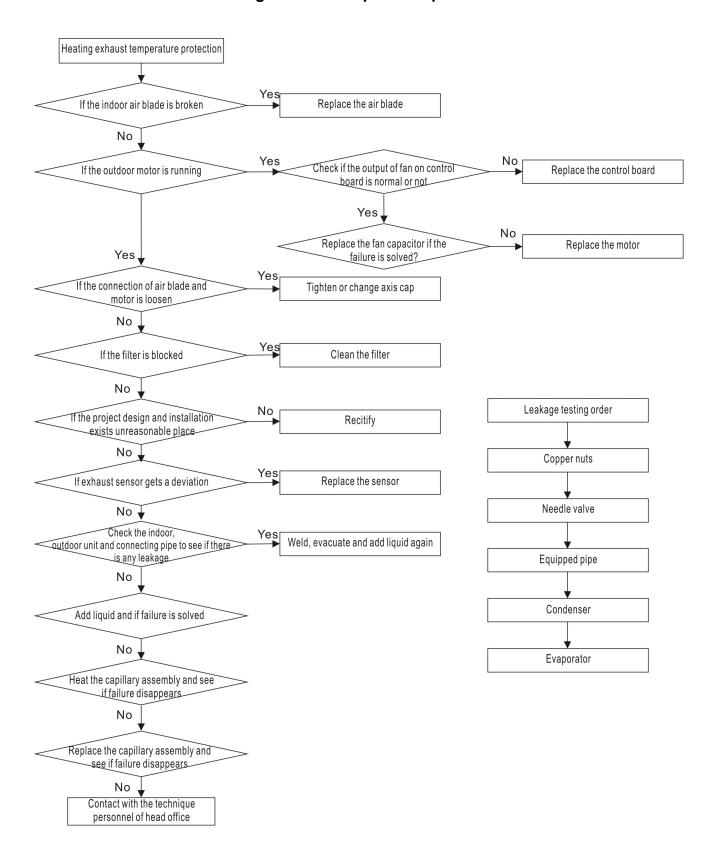



#### 2.3 [H6] low pressure protection

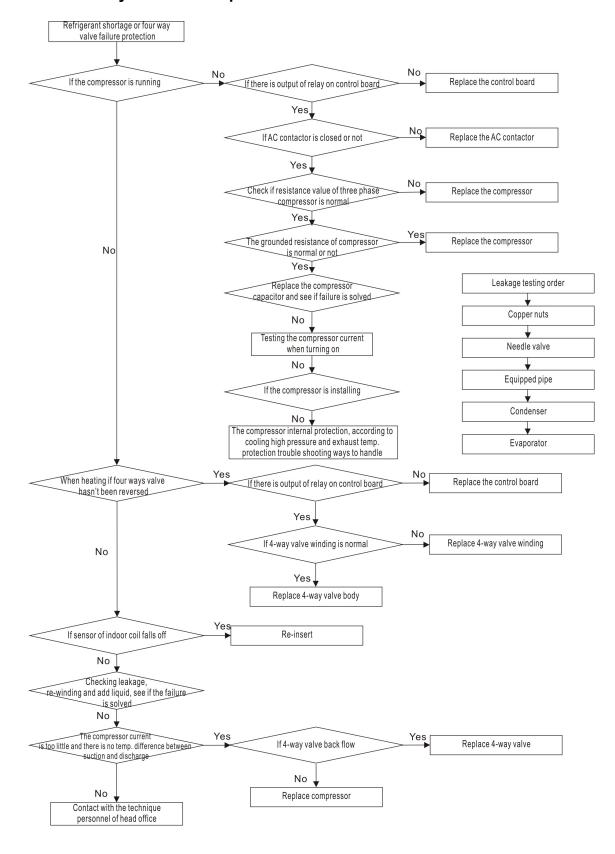
#### Cooling low pressure protection



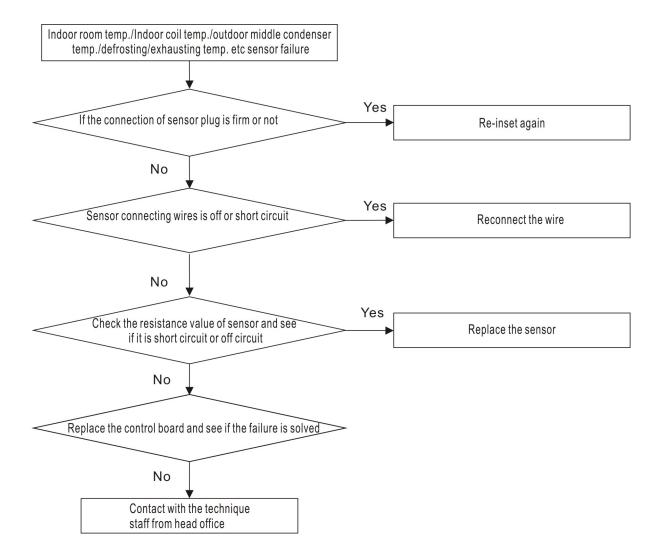

Heating low pressure protection




#### 2.4 [P5] High exhaust temperature protection


#### Cooling exhaust temperature protection




#### Heating exhaust temperature protection



#### 2.5 [H8] four way valve failure protection



#### 2.6 Sensor failure protection



#### REGULATION (EU) No. 517/2014 - F-GAS

The unit contains R32, a fluorinated greenhouse gas with global warming potential (GWP) = 675. Do not release R32 into the atmosphere.

GREENSTYLE DUAL 14000 UE - Kg. 1,07 = 0,722 Tonn CO<sub>2</sub> equiv.



www.argoclima.com